

1

TECHNICAL
DOCUMENTATION
DECENTRALISED CROSS-BORDER
MESSAGING SYSTEM

TABLE OF CONTENTS

1. GENERAL INFORMATION .. 2
2. TECHNICAL REQUIREMENTS ... 2
3. PROJECT ARCHITECTURE .. 3

3.1. SYSTEM ENTITIES ... 3
Private Key ... 3
Public Key ... 3
Node ... 3
System Participant ... 3
Network Address ... 3
Node Address ... 3
Currency ... 3
Main currency .. 3
Currency rates .. 3
Agreements .. 3
Limits .. 4
DCMS network ... 4
Balances ... 4
WSS channel .. 4
Message ... 4
Information message (Intention) ... 4

3.2. SYSTEM COMPONENTS .. 4
Core .. 4
Message storage service .. 5
Information publishing service .. 5
Common public layer ... 5
Client server ... 6
System interface .. 6

3.3. CORE ARCHITECTURE ... 6
Components ... 6
Packages: ... 7
Kernel Modification Options .. 9

4. MESSAGE FORMATS ... 9
Payment message (Payment) .. 9
Non-payment messages ... 11

Update
March 03, 2025

team@brics-pay.com

mailto:team@brics-pay.com

BRICS DCMS Technical Documentation brics-pay.com

 2

4.1. CONFIGURATION FILE (SETTINGS) ... 12
4.2. MULTILINGUALISM .. 12

5. VULNERABILITY ANALYSIS .. 12
6. SYSTEM NODE DEPLOYMENT ... 14

6.1 ASSEMBLY WITH A DOCKER .. 14
6.2 ASSEMBLY WITHOUT A DOCKER ... 15

1. Node ... 15
2. Message storage .. 16
3. Discovery service .. 16

1. GENERAL INFORMATION

Decentralised Cross-border Messaging System, hereinafter
referred to as DCMS, is a software package that provides
decentralized exchange of financial messages between two or more
participants in SWIFT message standard. The software package is a
convenient, secure and low-cost tool for interbank settlements.

The key difference of the system is the impossibility of forced
exclusion of participants, since there is no single owner.

DCMS is an alternative channel for transmitting financial messages
and does not exempt from compliance with regulatory rules.

One of the most important features is the platform architecture,
which allows achieving high performance and horizontal scalability,
unattainable in a classic distributed ledger based on blockchain.

DCMS links business processes of transmitting financial messages
and liquidity. In other words, the transfer of a financial message
goes through nodes that are correspondents in a future transaction.

Documentation includes:

• Node configuration file
• Swagger http://dcms.dev.dltc.spbu.ru:3001/api#/

2. TECHNICAL REQUIREMENTS

The project is written using the languages Go, Javascript, Solidity.

Criteria for disk space. The project code takes up ~30 MB (excluding
third-party libraries and version control systems). The required disk
space is calculated from the planned message storage volume.

Can be run on any modern Unix system. When deploying via
containerization, an additional 4 Gb of free space is required.

http://dcms.dev.dltc.spbu.ru:3001/api#/

BRICS DCMS Technical Documentation brics-pay.com

 3

3. PROJECT ARCHITECTURE

The system is based on a multi-component (microservice)
architecture.

3.1. SYSTEM ENTITIES

Private Key

A key used in asymmetric encryption. A part of a key pair that is not
published in the public domain. Can be used for both encryption and
decryption, depending on the algorithms used.

Public Key

A key used in asymmetric encryption. A part of a key pair that is not
published in the public domain. Can be used for both encryption and
decryption, depending on the algorithms used.

Node

A deployed instance of the system kernel with loaded keys of a
system participant

System Participant

A system participant is a person (natural or legal) who has control
over the node(s) and the key(s)

Network Address

The IP address and port of the running instance of the system kernel

Node Address

A fingerprint of the public key is used for addressing within the
DCMS

Currency

A cross-section of accounting units in the system

Main currency

The currency in relation to which all rates are set

Currency rates

Coefficients in relation to the main currency for calculating limits and
currency conversion rates

Agreements

The main essence of the system. An agreement can be concluded
between a pair of participants and means trusting the public keys of
the participants of the pair to each other.

BRICS DCMS Technical Documentation brics-pay.com

 4

Limits

When concluding an agreement, it is assumed that limits are set by
each party to the agreement. Limits are set both generally and for
each currency.

Setting a limit in a specific currency means the possibility of
transferring liquidity between the parties to the agreement. It is also
a risk management tool and a basis for auto clearing.

DCMS network

A set of nodes in the system that form a linked graph. There may
be a number of independent DCMS networks.

Balances

Balances formed in the process of transmitting messages for
agreements

WSS channel

Secure channel for exchanging messages between parties to
agreements

Message

A message about the transfer of funds. The recipient can be any
node of the DCMS network. It can be informational if the amount
specified in the message is 0.

Information message (Intention)

Information message about the transfer of funds. The recipient can
only be a node from the list of agreements.

3.2. SYSTEM COMPONENTS

The system is designed for easy integration into external systems
and has a set of replaceable components.

Main components of the system and functional tasks.

Core

1. Stores and processes agreements and their parameters

2. Provides a mechanism for transmitting messages, including
deferred ones.

3. Provides accounting of balances

4. Sends messages to the storage service

5. Sends information to the publication service

BRICS DCMS Technical Documentation brics-pay.com

 5

6. Limit request mechanism (request, acceptance, rejection) - no
stages, accounts, etc.

7. Deployed for each participant in the system

Message storage service

1. Stores messages and their status (delivered, not delivered,
awaiting sending)

2. Deployed for each participant in the system

3. Mechanism for receiving related messages

4. Deployed for each participant in the system, but can be used in
general if there is access filtering across nodes

Access to the message storage service is provided via Rest API calls.
This service is designed with the ability to replace or adapt to
already used storage services. The architecture provides for
replacement with another server implementing the interface
described in the OpenApi scheme in the configs/ms-api.json file.

Information publishing service

1. A layer for connecting to a common public layer, standardizing
the interaction of the core to provide publicly available information,
in particular: about node detection, conversion rates and
exceptional situations

2. Deployed for each participant in the system, but can be used in
general if there is access filtering in terms of nodes

Like the message storage server, interaction with the service is
carried out via the REST API, and it is also possible to implement
your own component.

Common public layer

1. Stores information published via the publishing service.

2. Characterized by low performance.

3. Assumes the use of a public or private blockchain network.

Below we list the auxiliary components of the system. Auxiliary
components solve a number of problems:
1. Simplify interaction with the system.
2. Solve a specific business problem.

BRICS DCMS Technical Documentation brics-pay.com

 6

 Client server

1. Offers the ability to easily deploy a node

2. Offers access roles to the deployed node - in addition to interfaces
for adding and blocking users, contains a repository that determines
the correspondence of authorization data, node and role

3. Offers a public ability to deploy a node with a given interface,
node in the agreement

4. Offers a full* software interface for interaction with the
corresponding user node of the system

5. Offers an interface for managing information for generating an
invoice.

The server is a layer that allows you to fully manage your node and
in the standard delivery does not contain logic for access restrictions
to the core.

System interface

1. Simplifies the initial deployment of the node
2. Displays the system interface corresponding to the user role
3. Gets a list of related messages in terms of the limit request
4. Calculates the stage of the agreement on the limit request based
on the received messages.
5. Calculates the available limit for transfers.
6. Generates messages with additional fields (not standardized by
the core), including files, BIC, SWIFT code, etc.

These fields are encoded in json and sent in the body. File encoding
is applied in RAW or base64.

3.3. CORE ARCHITECTURE

The system core is written in the Go programming language and
contains the following logical and functional components
implemented by packages.

Components

1. Message component
Defines the structure of transmitted messages
a. Message sending component

2. Agreement component

BRICS DCMS Technical Documentation brics-pay.com

 7

3. Balance accounting component

4. Node connection component

5. Message processing service
a. Message sending service
b. Message receiving service
c. Message forwarding service

6. Node connection maintenance service

7. Command processing service
a. CLI interface (depricated)
b. TCP interface
c. gRPC interface (in future versions)

8. Node service startup script

9. Settings storage component
a. System behavior settings

i. General behavior settings (encryption mechanisms,
paths to discovery services)
ii. Settings taken out into agreements (e.g. encryption
mechanism)
iii. Sending and forwarding settings
iv. Key storage
v. Business settings (conversion rates, etc.)

b. Agreement settings

10. Message encryption component
a. Encryption implementation component

11. Logging component

12. Detection service interaction component

13. Message storage service interaction component

Packages:

• app/
Contains the basic types shared by the components and the
application instance that is launched, which, depending on the
passed strategy, builds and launches the node.

• components/
Contains packages of components from which strategies are
assembled. Each component must satisfy the interface.
Component or ActiveComponent from the app/ package

• components/ui
Contains user interface packages for accessing the core, as well as
auxiliary functions and structures.

BRICS DCMS Technical Documentation brics-pay.com

 8

As of the date of this document, an interface has been implemented
over the tpc protocol that accepts json messages of the form

{
"type": "<command>",
"payload": <command argument>
}

It is possible to connect to a socket to send commands, for example,
using the netcat software utility.

foo@bar$: nc -l 127.0.0.1:<node command port>

• components/transferMessage/encoder
Contains message encryption algorithms. Each algorithm is
implemented by a structure that satisfies the MEA interface from
this package. After adding a new encryption algorithm, it must be
registered in the encoder component

• exceptions/
Contains user errors

• loader/
The package contains the system kernel configuration loader.

• logger/
Contains several logger implementations that satisfy the Logger
interface from the app/ package.

• state/
Contains a version of the application state implementation. The
state stores the necessary information for processing messages and
the logic for saving the state to disk. Each state implementation
must satisfy the State interface from the app/ package.

• store/
Contains implementations of message storage access components.
Implementations must satisfy the Store interface from the app/
package.

• strategies/
Contains possible strategies for launching the application. Strategies
must satisfy the Strategy interface from the app/ package.

• tests/
Contains e2e tests, as well as helper packages mock/ and helpers/

BRICS DCMS Technical Documentation brics-pay.com

 9

The helpers/ package contains an alternative version of the strategy
builder, allowing for easy and transparent management of multiple
nodes via code.
utils/
Contains common helper functions

Kernel Modification Options

The core of the system is written in a component style, which means
that many of its parts can be replaced, for example:

• The message acceptance component can act as a gateway, or it can,
for example, wait for a manual message acceptance

• The system state component can be replaced with a Redis-based
component

• The core can be controlled via other protocols, such as gRPC or http

To create and use your own system components, you need to create
a new strategy in the strategies package

Based on the data model, the system is implemented in a reactive
style, so each component is a set of subjects and subscribers that
are linked by a strategy. The strategy can also implement
dependency injection.

After creating a strategy and describing the component connections,
you should create a runtime package in the cmd/ directory. It is
delegated to load configurations and initiate state components,
message storage service access components, and a logger.

Also, when a node is started, an object of the context.Context type
is set, from which all node components inherit their contexts.

Disabling a context entails stopping all application components.

4. MESSAGE FORMATS

Payment message (Payment)

When creating a message, the sender fills in the following fields:
• Receiver (string 32 byte) — unique identifier of the recipient node
• Currency (string 3 byte) — currency name
• Amount (float64 8 byte) — amount of currency to be transferred in

the specified currency
• Text (string) — meta information that can be encrypted so that only

the recipient can read it. The size may be limited by the encryption
mechanism chosen.

• MaxFee (float64 8 byte) — the maximum fee the sender is willing
to pay. If it is impossible to send a message with the specified
MaxFee, the message will not be sent.

BRICS DCMS Technical Documentation brics-pay.com

 10

• Encoding (string 4 byte) — a string corresponding to the available
encryption algorithm with which the Text field will be encrypted

• TransferTimeout (float64 8 byte) — the maximum sending date,
until which time the message can be transmitted via the WSS
channel. Specifies the time in seconds after which the message will
be discarded if it has not reached the recipient due to the lack of a
path or insufficient commission level MaxFee.

• ConfirmationTimeout (float64 8 byte) — the deadline for
receiving confirmation, before this date it is possible to receive
confirmation via WSS. Specifies the time in seconds after which the
message must be published in the Detection Service, otherwise the
message will not reach the sender.

• DiscoveryTimeout (float64 8 byte) — the deadline for receiving
confirmation from the detection service, before this date it is
possible to receive confirmation from the detection service. Specifies
the time in seconds after which the message should be discarded if
the sender has not received confirmation of the transaction. After
this period, the message is canceled.

When transmitting between nodes in search of a path to the
recipient, the message (Transfer) has the following fields:

• Id (string 16 byte) — a message identifier that does not change
when the message is transmitted.

• Receiver (string 32 byte) — unique identifier of the recipient node
specified by the sender.

• Currency (string 3 byte) — currency name specified by the sender.
• Amount (float64 8 byte) — the amount of currency to be

transferred, specified by the sender.
• Path ([]string) — list of nodes involved in message transmission
• Text (string) — meta information specified by the sender
• TransferDeadline (time.Time 24 byte) — timestamp after which a

message that has not reached its recipient will be discarded.
• ConfirmationDeadline (time.Time 24 byte) — timestamp after

which the message that reached the recipient will be published in
the Discovery Service.

• DiscoveryDeadline (time.Time 24 byte) — timestamp after which
a message whose acknowledgement has not reached the sender will
be discarded and cancelled by all nodes.

• Encoding (string 4 byte) — the encryption algorithm with which the
Text field is encrypted

• MaxFee (float64 8 byte) — the remainder of the commission that
the transit hub can take.

BRICS DCMS Technical Documentation brics-pay.com

 11

When the message is received by the recipient, the recipient signs
and sends a confirmation (Confirmation) to the sender with the
following fields:

• Id (string 16 байт) — a message identifier that does not change
when the message is transmitted.

• ConfirmationDeadline (time.Time 24 byte) — timestamp after
which the message, having reached the recipient, will be published
in the Discovery Service.

• DiscoveryDeadline (time.Time 24 byte) — timestamp after which
a message whose acknowledgement has not reached the sender will
be discarded and cancelled by all nodes.

• MaxFee (float64 8 byte) — the remainder of the commission that
the sender does not pay. Accordingly, the commission that the
sender must pay is equal to the difference between the MaxFee
specified by the sender when creating the message and this
remainder value.

• Path ([]string) — the full path from the sender to the recipient that
the message passed through.

• Receiver (string 32 byte) — unique identifier of the recipient node
specified by the sender.

• Cert (string 1172 byte) — public certificate of the sender to verify
the signature, in case the transit node does not know the recipient.

• ReceiversSign (string 344 byte) — signature of the recipient of the
confirmation.

Non-payment messages

Non-payment messages for exchanging documents or agreeing on
a contract between nodes (Intention) contain the following fields:

• Id — message group id
• Source — unique identifier of the node that sent this message.
• Dest — unique identifier of the node that received this message.
• Currency — currency name
• Amount — amount of currency to reconcile balances between nodes

in the specified currency.
• Done — is the message complete
• State — a meta number describing the state of a group of messages

with the specified Id.

When transmitting messages between nodes, the message is
encoded and written into a Transaction with the following fields:

• Id — unique transaction identifier
• Type — a string that takes one of the following values:

o "transfer" (1.b)
o "confirmation" (1.c)
o "Intention" (2)

BRICS DCMS Technical Documentation brics-pay.com

 12

• Dest — unique identifier of the intermediate node that received this
transaction.

• Source — unique identifier of the intermediate node that sent this
transaction.

• Sign (string 344 byte) — signature of a transaction by an
intermediate node that sent the transaction.

• Payload — coded message (Transfer, Conformation или Intention)

 4.1. CONFIGURATION FILE (SETTINGS)

The configuration file can be initially generated when the node is
deployed. The file contains the node's private key, currency settings,
and agreements.

4.2. MULTILINGUALISM

Multilingualism concerns only the client interface of the node. The
current system has 2 localization files "Russian" and "English". It is
possible to add new localization settings in src/utils/languages.ts.

5. VULNERABILITY ANALYSIS

Possible vulnerabilities and methods for eliminating them.

The main vulnerabilities under consideration are related to the
possible modification of an attacker-controlled node.

Vulnerability What will happen Why

Send a payment
message to a node
with which there is no
agreement

The message will be
discarded.

Nodes do not accept payment
messages from nodes with which an
agreement has not been
established.

They will send a
payment message
with an incorrect
recipient.

The message will be
discarded.

The message will not find a recipient
and will be discarded after
TransferTimeout.

Substitution of one or
more fields id,
currency, amount,
Receiver,
ConfirmationDeadline,
DiscoveryDeadline

It will be noticed when
sending confirmation and
the transaction will be
cancelled due to a
breakdown.

The confirmation fields are signed
by the recipient, if replaced again
the signature will be incorrect. And
if there is no repeated substitution,
the other node will notice that the
fields before confirmation and

BRICS DCMS Technical Documentation brics-pay.com

 13

during message
transmission

during confirmation are different
and will cancel the message.

Пpath override during
message transmission

It will be noticed when
sending confirmation and
the transaction will be
cancelled due to a
breakdown.

If the path block is damaged, one of
the nodes will not be able to decrypt
it and will cancel the message.

In case of substitution
of MaxFee in the
higher direction

It will be noticed when
sending the confirmation
and the transaction will
be cancelled due to a
breakdown

or

the node that substituted
the message will suffer
losses

If a node replaces the MaxFee field
again, the signature will be invalid
and the message will be canceled

or

the node that performed the
replacement will pay part of the
sender's fee

In case of substitution
of MaxFee to the
lower side

The message will go
through without errors.

In this case, the node debited the
commission from the sender.

In case of replacing
MaxFee with a
negative value

The message will be
discarded or cancelled.

When processing transfer and
confirmation, MaxFee is checked. If
the value is negative, the message
will be discarded or canceled
accordingly.

If the recipient and
other nodes team up
and decide to change
fields in the message.
When substituting,
the alliance can also
change the
confirmation
signature.

The message will reach
the sender without any
problems. Attackers will
not be able to make
money on it

The sender and other nodes will not
lose anything, and the recipient will
receive funds from the nodes with
which it has merged, which is
disadvantageous for these nodes.

In case of a change in the node code by one or more participants in
the chain, the following mechanisms are provided to protect
payments from intruders:

BRICS DCMS Technical Documentation brics-pay.com

 14

When creating an agreement using Intention messages, you can
agree on the terms of the agreement between nodes. These
messages allow you to exchange documents for the purpose of
concluding agreements and formalizing the legal relations of the
participants. In addition, all transactions between nodes linked by
the agreement are signed. If one of the parties refuses to pay the
funds transferred in the system, the other party can present the
agreement and a list of signed transactions to confirm the transfers.

Due to the signature of the confirmation by the recipient, the fields
cannot be changed when the confirmation is transmitted to the
sender, since the signature of the recipient is verified with each
transaction transmission. If the fields were changed before the
confirmation was signed, then after the confirmation was signed,
one of the nodes in the message path, including the sender, will
notice the substitution and notify the other nodes about the
cancellation of the message. In this way, the substitution of
message fields by one or more participants is detected.

If a node is disconnected from the network, the network will
continue to operate without the disconnected node. Even if the node
is involved in the transfer of funds, but it disconnected without
waiting for confirmation, the message will either wait for the node
to connect to the network or the message will be sent to the
Discovery Service. Then the disconnected node will be able to
recover messages from the Discovery Service.

6. SYSTEM NODE DEPLOYMENT

6.1 ASSEMBLY WITH A DOCKER

Loading the necessary repositories and starting a cluster consisting
of 4 nodes with private message stores is done by a script

autostart.sh

On the main branch of the dcms-docker-build repository.

The container set will use the following ports

:8000 - general service detection port

:300[1-4] - server port. This port can be used to access the REST
API and dynamic web page

:400[-4] - message store port. This port can be used to access the
API of the message store

BRICS DCMS Technical Documentation brics-pay.com

 15

6.2 ASSEMBLY WITHOUT A DOCKER

1. Node

The source path of the node is located in the dcms-node repository

The node startup file is located in /cmd/main/main.go

The node needs to be configured at startup. A list of existing
configuration parameters:

There are several ways to configure the node startup

Using flags

The following flags are used:
• -id - Node name
• -ip - Host address
• -wsport - Wss port for receiving and transmitting messages
• -port - http port for connecting to other nodes
• -command-port - Commands reception port
• -transfer-timeout - Standard timeout for sending messages
• -confirmation-timeout - Standard timeout for receiving

confirmations
• -discovery-timeout - Standard timeout for reading confirmations

from the discovery service
• -buffsize - Size of message sending buffer
• -discovery - Discovery service address
• -store - Address of message store
• -tls-cert - Path to certificate
• -tls-key - Path to certificate key
• -cwd - Path to save temporary files
• -state - Path to save node state
• -save-state - Whether to save node states to disc
• -allow-transit - Whether to allow transmissions of transit

messages
• -allow-cipher - Whether to allow transit transmission of encrypted

messages
• -allow-gateway - Whether to convert currency
• -gateway-stake - The portion of the payment that is included in

the currency conversion fee.
• -discovery-poll-interval - Frequency of accessing the discovery

service to retrieve lost confirmations (in seconds)
• Path to configuration file

Using the prompt bootloader

If you run the file without any additional arguments, the node will
prompt you to enter the necessary parameters for launch manually.

BRICS DCMS Technical Documentation brics-pay.com

 16

Using a configuration file

If the only configuration parameter passed is config (path to the
configuration file), then all other settings will be read from it.

The configuration file is a json file according to the scheme described
in config/config-schema.json

It is also possible to start a node from a ready state file. To do this,
place the saved state in the stdin of the process at startup.

Before starting a node, the discovery service and the message
storage service must be running.

foo@bar$: go run cmd/main/main < saved_state.json

Some of the settings can be subsequently changed during the
operation of the node using a special command.

2. Message storage

The message storage is a Rest Api service that performs CRUD
operations on message entities.

OpenApi schema is stored in configs/ms-api.json

The implementation from dcms-message-storage accepts as
settings only the port number to run and the path to the sqlite
database file and reads them from the PORT and DB_PATH
environment variables respectively.

Launch example:

PORT=12345 go run cmd/main.go

3. Discovery service

The discovery service is located in the repository dcms-discovery.

The discovery service accepts the following parameters as file
launch flags cmd/main/main.go:

• port - server startup port
• address - EVM wallet address (private key) for smart contract

execution
• contract - smart contract address for publishing and reading node

information and messages
• ip - EVM compatible node address

BRICS DCMS Technical Documentation brics-pay.com

 17

Important note: all the components described do not contain
authorization and authentication mechanisms, and access security
must be organized by other methods - physical or network, or
through integration with internal authorization and authentication
systems.

